Set theory - Winter semester 2016-17

Problems	Prof. Peter Koepke
Series 8	Dr. Philipp Schlicht

Problem 33 (6 points). Let S_{α} denote the set of finite strictly decreasing sequences of ordinals strictly below $\alpha \in \operatorname{Ord}$ and

$$
S=\bigcup_{\alpha \in \operatorname{Ord}} S_{\alpha}
$$

Let $\vec{s}=\left(s_{0}, \ldots, s_{m}\right)<^{*} \vec{t}=\left(t_{0}, \ldots, t_{n}\right)$ for $\vec{s}, \vec{t} \in S$ if
(i) $n<m$ and $s_{i}=t_{i}$ for all $i<n$ or
(ii) there is some $i \leq \min (\{m, n\})$ with $s(i) \neq t(i)$, and for the least such i, $s(i)<t(i)$.
Prove the following statements.
(a) $<^{*}$ is a wellfounded relation on S (hint: you can use Problem 15).
(b) $\left(S_{\omega+\omega},<^{*}\right)$ is isomorphic to $(\omega \cdot \omega,<)$, where $\omega+\omega$ denotes the ordinal sum and $\omega \cdot \omega$ denotes the ordinal product.

Problem 34 (4 points). Prove the following statements.
(a) If λ is a limit cardinal, then there is a cofinal function $f: \operatorname{cof}(\lambda) \rightarrow$ $\operatorname{Card} \cap \lambda$.
(b) If λ is an infinite cardinal, then $\operatorname{cof}(\lambda)$ is equal to the least ordinal γ such that there is a sequence $\left\langle\kappa_{i} \mid i<\gamma\right\rangle$ such that $\kappa_{i} \in \operatorname{Card} \cap \lambda$ for all $i<\gamma$ and $\sum_{i<\gamma} \kappa_{i}=\lambda$.

Problem 35 (4 points). (a) Show that for every transitive set $x,(x, \in)$ satisfies the Axiom of Extensionality.
(b) Suppose that κ is (strongly) inaccessible. Show that V_{κ} is closed under the following operations.
(i) Power sets, pairs and unions.
(ii) For every formula $\varphi(x, y, z)$, the map f_{φ} sending an ordered pair (y, z) to the set

$$
f_{\varphi}(y, z)=\{x \in y \mid \varphi(x, y, z)\} .
$$

(iii) For every formula $\varphi(a, b, c, d)$, the map g_{φ} sending an ordered pair (c, d) to the set

$$
g_{\varphi}(c, d)=\left\{(a, b) \in V_{\kappa} \mid a \in c \wedge \varphi(a, b, c, d)\right\}
$$

if this is a function, and to $g_{\varphi}(c, d)=0$ otherwise.

Problem 36 (6 points). Suppose that the GCH holds. Then for $\kappa, \lambda \in$ Card,
(a) For $\lambda<\operatorname{cof}(\kappa), \kappa^{\lambda}=\kappa$.
(b) For $\operatorname{cof}(\kappa) \leq \lambda \leq \kappa, \kappa^{\lambda}=\kappa^{+}$.
(c) For $\lambda>\kappa, \kappa^{\lambda}=\lambda^{+}$.

